衛星影像分析-集集攔河堰水體計算

Monitoring the storage volume of Jiji weir water reservoirs from Taiwan Data Cube using multi-spectral satellite images

本研究利用福衛5號及Sentinel-2衛星影像監測自西元2018年~2023年 期間集集攔河堰水體與水下沉積物變化量值計算,利用 Semi-automatic Classification Plugin (SCP) 及 Normalized Difference Water Index (NDWI) 比較水體面積變化與氣象水文資訊並分析兩種指標的差異與應用。

研究顯示NDWI在測量水體範圍具較高可信度。因水面下沉積物會隨時間增減遷徙,所 以利用地表輻射值與數值高程模型(DEM)模擬沉積物不同時序堆疊情形。為證實地表輻 射值與地形有關聯性,我們使用水利署光達剖面圖資與本研究結果比對,發現乾季時模 擬結果與光達圖資高度吻合。後來搭配高解析空拍圖與NDWI細分不同物件組成的適當 數值區間,並將此方法擴增應用至臺灣北中南區水庫水情分析。

2021年初西部地區的大規模乾旱導致全台缺水,集集攔河堰因先前泥沙堆 積導致蓄水量下降使缺水更明顯,鄰近日月潭四月中旬出現罕見大草原, 使我們對於水資源有更濃厚的興趣!有時會想:乾旱時會有甚麼現象? 能使用的水有多少?濁水溪含沙量影響水庫很大嗎?因此探討此樣區。

近年衛星影像技術崛起,由於進行傳統測深或光達測量曠日廢時,為了更快速得知水面 下河床地形,我們想到或許可以利用衛星推知水底之地貌起伏或水情特徵。因此決定將 水資源利用與衛星影像結合,一解心中之疑惑。

討論2018年~2022年集集 攔河堰蓄水面積變化趨勢

權衡創建之標準分類法 應用於其他集水樣區的

建制標準分類法以期由

光達實測剖面與衛星影像 輻射值DEM地勢起伏比較

歸因 SCP 及 NDWI 計算 水體面積的準確度及差異

集集地區降雨量 04

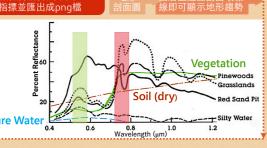
圖層波段調整為非自然色

像強化波段以利樣區判讀

挑選訓練資料作為樣區分類

影像成果向量化以得出面積

集集攔河堰蓄水面積 03 01 Jupyter蒐集衛星影像


用raster calculator計算 (Green-NIR)/(Green+NIR

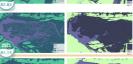
NDWI

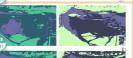
數值大於0的作為水體範圍 將其向量化以得出水體面積

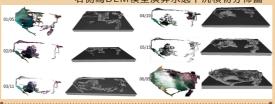
> 利用QGIS中的佈局管理器於光譜數據計算成果圖上 分別標示圖例、比例尺、方位指摽並匯出成png檔

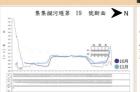
實乾季地形計算具正相關

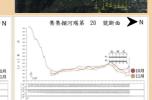
一、衛星影像水體分布


NDWI及SCP衛星影像分類結果如下圖所示

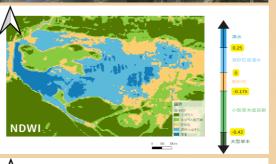

@深紫及深綠色區域代表裸露地



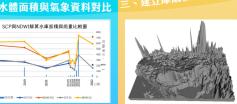

二、利用輻射值繪製DEM水下地形


下圖為2021年臺灣西部大乾旱事件1~6月 旱季時期利用DEM所繪製出的水底地形圖 左側為NDWI計算水體所剪下的遮罩範圍 右側為DEM模型演算水底下沉積物分佈圖

三、驗證DEM之準確性


利用輻射值地形剖面圖與 水利署光達實測剖面資料 進行比對與驗證,發現其 地勢起伏相關性極高。

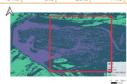
四、利用NDWI及NDVI的和差比值繪製分類圖

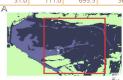


· 兩種解算法的差異

、水體面積與氣象資料對比

在集集攔河堰拍攝的航照 資料。訓練樣區只有三種 較不利於SCP進行分類。


NDWI數據 NDWI與SCP水體面積變化趨 DEM分析



及趨勢較接近水利署:勢跟累積雨量大致呈正相關。: 是使用輻射值強弱去 • 模擬地底地形,並與光達 實測資料做應證,結果顯 示兩者具極高度相關性。

年/月	2018/01	2019/03	2020/02	2021/01	2021/02	2021/03	2021/04	2021/05	2021/06	2022/01
SCP FS5 (公頃)	60.2081	32.5926	57.9927	47.8188	none	none	none	none	none	42.5644
NDWI FS5 (公頃)	113.6650	105.0820	66.4359	88.8336	none	none	none	none	none	143.7258
SCP S2 (公頃)	56.0255	14.4221	26.7511	58.4246	34.1012	30.5077	24.3621	64.2636	77.7024	31.5877
NDWI S2 (公頃)	124.6168	126.2194	59.4051	93.3898	48.7603	59.4278	47.6791	75.6979	148.1240	118.2255
月降雨量 (mm)	136.0	168.0	34.5	9.0	25.0	11.5	31.0	111.0	695.5	36.0
			_ ^		A					

四、探討可用水資源多寡

重新細分不同物件NDWI的適當數值區間範圍,可以快速準確區分集水內的深水區、 淺水區及濕砂石、乾砂石、小型草木及苔癬、大型草木。並將此法應用於其他水庫。

- 一、衛星影像分析顯示水庫面積與降雨量吻合且可有效即時監測旱象。
- 研究結論 二、NDWI在測量水體範圍上準確度較高,而SCP於研究範圍類別較單
 - 三、經驗證輻射值剖面圖與光達剖面圖呈高度相關,因此乾季時,可有 效模擬出水下沉積物分布型態,具備水庫水資源體積計算之潛力。
 - 四、從DEM模型可知乾季時水底沉積物並無明顯遷徙;濕季時因水中 挾帶大量泥沙使水色混濁,無法由輻射值轉DEM模擬水下地形。**
 - 五、NDWI搭配適當的指數區間設定,可快速準確區分集水範圍內不同
 - 六、本研究建製分類法亦適用於其他水庫,有利後續發展旱象預警系統。

- 一、即時運用衛星影像解算NDWI監測水庫水位或淤沙量,作為限水、 潰堤警界預報。
- 、開發即時觀測水情之APP,以便民眾更加知曉台灣水情。
- 三、可將SCP用於樣區類別較多處進行分析。

- Inter-Annual Variability in a Mediterranean 其他參考文獻與資料,請見研究報告作品説明書